JOURNAL OF COMPUTATIONAL PHYSICS 118, 329-347 (1995)
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A detailed analysis is presented to demonstrate the capabilities
of the lattice Boltzmann method. Thorough comparisons with other
numerical solutions for the two-dimensional, driven cavity flow
show that the lattice Boltzmann method gives accurate results over a
wide range of Reynolds numbers. Studies of errors and convergence
rates are carried out. Compressibility effects are quantified for differ-
ent maximum velocities and parameter ranges ara found for stable
simulations, The paper’s objective is to stimulate further work using
this relatively new approach for applied engineering problems in
transport phenomena utilizing parallel computers.  © 1995 Acadernic
Press, Inc.

1. INTRODUCTION

Lattice gas automata (LGA) and its later derivative, the lattice
Boltzmann equation method (LBE), are relatively new ap-
proaches that utilize parallel computers to study transport phe-
nomena. Since the first two-dimensional model representing
incompressible Navier—Stokes equations was proposed by
Frisch, Hasslacher, and Pomeau (FHP) in 1986 [1], LGA have
attracted much attention as promising methods for solving a
variety of partial differential equations and modeling physical
phenomena [2-5].

A lattice gas autormaton is constructed as a simplified, ficti-
tious microworld in which space, time, and particle velocities
are all discrete. In general, a lattice gas automaton consists of
a reguiar lattice with particles residing on the nodes. A set of
Boolean variables ni(x, #) (i = 1, ..., b} describing the particle

occupation is defined, where b is the number of directions of
the particle velocities at each node. Starting from an initial
state, the configuration of particies at each time step evolves
in two sequential steps: (a) strecaming, where each particle
moves to the nearest node in the direction of its velocity; and
(b) colliding, which occurs when particles arriving at a node
interact and possibly change their velocity directions according
to scattering rules. For simplicity, the exclusion principle (no
more than one particie is allowed at a given time and node
moving in a given direction) is imposed for memory efficiency
and leads to a Fermi—Dirac equilibrium distribution. The strat-
egy of the lattice gas is twofold: (2) to construct a model as
simple as possible of the microworld to permit simulations of
a system composed of miany particles and (b) to capture the
essential features of real collision processes between particles
such that, for long times and large scales, macroscopic transport
phenomena are captured.

That the evolution of particles on an artificial lattice can
simulate the macroscopic behavior of fluid flow is based on
the following observations: the macro-dynamics of a fluid is
the result of the collective behavior of many particles in the
system and details of the microscopic inieractions are not essen-
tial. Changes in molecular interactions affect transport proper-
ties such as viscosity, but they do not alter the basic form of
the macroscopic equations as long as the basic conservation
laws and necessary symmetries are satisfied [2, 3].

Due to the microscopic nature and local interaction between
particles, the lattice gas approach possesses some unique advan-
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tages. The scheme is absolutely stable; boundary conditions
are easy to implement; the mode! is ideal for massively parallei
computing because the updating of a node only involves its
nearest neighbors, the code is simple and can be easily written
in the form for parallel processing. The lattice gas method also
contains some problems such as non-Galilean invariance (due
to the existence of a density-dependent coefficient in the con-
vection term of the Navier—Stokes equation), an unphysical
velocity-dependent pressure, and an inherent statistical noise
that requires a spatial or time averaging to obtain smooth macro-
scopic quantities. To avoid some of these inherent problems,
several lattice Boltzmann (equation) models have been pro-
posed [6-13]. The main feature of the LBE is to replace the
particle occopation variables, n; (Boolean variables) by the
single-particle distribution functions (real variables) f; = (n},
where { ) denotes a local ensemble average, in the evolution
equation, i.e., the lattice Boltzmann equation.

The lattice Boltzmann equation as a numerical scheme was
first proposed by McNamara and Zanetti [6]. In their model,
the torm of collision operator 1s the same as in the LG A, written
in terms of distribution functions and completely neglecting
the effects of correlations between the particles. Higuera,
Jimenez, and Succi [7, 8] introduce a linearized collision opera-
tor that is a matrix and has no correspondence to the detailed
collision rules, Statistical noise is completely eliminated in
both models; however, the other problems remain, since the
equilibrium distribution is still Fermi—Dirac. The lattice Boltz-
mann model proposed by Chen et al. {10, 12] and Qian et
al. [9, 11) abandons Fermi—Dirac statistics and provides the
freedom required for the equilibrium distribution to satisfy
isotropy, Galilean invariance and to possess a velocity-indepen-
dent pressure. The models in [10-12) apply the single relaxation
time approximation first introduced by Bhatnager, Gross, and
Krook in 1954 [14] to greatly simplify the collision operator.
This model is called the lattice Boltzmann BGK model.

Compared with the latiice gas approach, the lattice Boltz-
mann method is more computationally efficient using current
paraliel computers. Applications have been done using both
methods for hydrodynamics [15-18], flow through porous me-
dia [19, 20], magneto-hydrodynamics [21, 22], multiphase flow
[23-26], and the reaction-diffusion equation [27-29]. Collected
papers and applications of lattice gas and lattice Boltzmann
methods can be found in |4, 5, 30-32).

Despite these studies on various problems, quantitative inves-
tigations of LGA and LBE are still scarce. There are some
papers which include comparison of LBE with traditional com-
putational methods [17, 18, 33]. In [17], a comparison between
LBE and a finite difference method for the Navier—Stokes
equations was done for the case of a double periodic jet flow.
Kinetic energy as a function of time and vorticity confour at
two times were compared for Re = 10,000, In [18], some global
guantities as well as energy spectra were used for comparison
between LBE and spectral method. In {33], LBE is only com-
pared to a finite difference method of the Navier—Stokes equa-
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tions for decaying Taylor vortex with Re = 100. The error
averaged over some time period and over the whole field was
wsed for the comparison. These comparisons indicate good
agreement between LBE and traditional methods in most cases.
However, all the aforementioned works used periodic flow
without solid boundaries. Hence, it is important to do a thorough
comparison in the presence of solid boundaries with compli-
cated flow patterns over a wide range of Re numbers in order
to give confidence to the engineering society about LBE. In
the present work, the lattice Boltzmann BGK model (LBGK)
is used to solve for the viscous flow in a square, two-dimen-
sional cavity driven by shear due to one moving wall for Reyn-
oids numbers up to 10,000. Detailed comparisons between the
LBGK and traditional methods are presented. The compressibil-
ity error and the convergence raie of the method are discussed.
The objective of this paper is to analyze the accuracy and
physical fidelity of the lattice Boltzmann BGK method and to
stimulate further studies using the latiice Boltzmann approach.

Section 2 presents a technical synopsis of the Jattice Boltz-
mann model used in this paper that will enhance the general
reader’s understanding of this simulation methed. More techni-
cal details are given in the Appendix for those who want to
use the lattice Boltzmann method. The lattice Boltzmann simu-
lation of driven cavity flow is discussed in Section 3 and thor-
oughly compared with results from other numerical methods.
Section 4 studies the numerical errors in lattice Boltzmann
simulations due to lattice size and compressibility. Section 5
is devoted to comparisons between the square lattice and the
triangular (FHP) lattice. The limit of relaxation time for these
two models is explored. The final section contains conclud-
ing remarks.

2. TWO-DIMENSIONAL SQUARE LATTICE
BOLTZMANN MODEL

In this section an outline is given of the procedures of the
lattice Boltzmann simulation. A square lattice with unit spacing
is used on which each nede has eight nearest neighbors con-
nected by eight links (see Fig. Al in the Appendix). Particles
can only reside on the nodes and move to their nearest neighbors
along these links in the unit time step. Hence, there are two
types of moving particles. Particles of type | move along the
axes with speed Je;] = 1 and particles of type 2 move along
the diagonal directions with speed |e,| = V2. Rest particles
with speed zero are also allowed at each node. The occupation
of the three types of particles is represented by the single-
particle distribution function, f,(x, 1), where subscripts o and
i indicate the type of particle and the velocity direction, respec-
tively. When o = 0, there is only f;,. The distribution function,
Jr(x, ), is the probability of finding a particle at node x and time
t with velocity e;. The particle distribution function satisfies the
lattice Boltzmann equation

falxtest+ 1) —fulx,n=Q,, (1}
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where (1, is the collision operator representing the rate of
change of the particle distribution due to collisions, According
10 Bhatnagar, Gross, and Krook (BGK) [ 14], the coilision opera-
tor is simplified using the single time relaxation approximation,
Hence, the lattice Boltzmann BGK equation (in lattice units) is

faX +eq i+ 1)~ fofx, 1) = "iT[fm-ix, H-fax0, @

where f%(x, ) is the equilibrium distribution at x, 7, and 7 is
the single relaxation time which controls the rate of approach
to equilibrium. The density per node, p, and the macroscopic
velocity, u, are defined in terms of the particle distribution
function by

22 a=p 2 Xk = pu. 3)

A suitable equilibrium distribution can be chosen in the foilow-
ing form for particles of each type [11]}:

5= %pl1 — ),
£ =4%pll + 3(ey-u) + Hey-u)y — 4l 4)
Ez?) = §1€P“ + 3(ey-u) + 3ey — w)? — 4],

The relaxation time is related to the viscosity by

:27—1
6 1

v

(5)

where v is the kinematic viscosity measured in lattice units. A
detailed derivation of the LBGK model is given in the Ap-
pendix.

Having chosen the appropriate lattice size and the characteris-
tic velocity for the LBE system, the viscosity, v, can be calcu-
lated for a given Re number and then the relaxation time can
be determined by using (5). Starting from an initial density and
velocity fields, the equilibrivm distribution function can be
obtained using Eq. (4), and f.(x, ) can be initialized as
S9x. 1) (maybe with some corrections [44]). For each time
step, the updating of the particle distribution can be split into
two substeps: collision and streaming. It is irrelevant which
one is the first for a long time run. The collision process at
position x occurs according to the right-hand side of the lattice
Boltzmann equation given as Eq. (2). The resulting particle
distribution at x. which is the sum of the original distribution
and the collision term, is then streamed to the nearest neighbor
of x, x + e,, for particle velocity e,;. Then p, v can be computed
from the updated f;(x, #) using Eq. (3). The updating procedure
can be terminated for steady state problems when certain criteria
are reached. The method can also be used for transient problems.

The boundary condition commonly used at solid walls is the
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no-slip condition for which velocities vanish at the wall. This
is implemented in the lattice gas and Jaitice Boltzmann methods
with the bounce-back rule in which all particles hitting the wall
are reflected back in the direction from which they came.

Another lattice model commonly used in two-dimensional
lattice gas and lattice Boltzmann simulations is the triangular
lattice (FHP model) [1, 2]. This is a two-speed (0 and 1) model
in which the lattice constant (link) is equal to one. Simulations
of cavity flow are also performed in this paper using this model.
Comparisons between FHP and square lattice are discussed in
Section 5. Two commonly used models for three-dimensional
simulations are the 24-velocity FCHC [2] and the 14-velocity
cubic models [11, 16].

3. CAVITY SIMULATION

The problem considered is two-dimensional viscous flow in
acavity. An incompressible fluid is bounded by a sguare enclo-
sure and the flow is driven by a uniform translation of the top.
The fluid motion generated in this cavity is an example of
closed streamline problems that are of theoretical importance
because they are part of a broader field of steady, separated
flows. The literature is abundant for this flow configuration
which shows rich vortex phenomena at many scales depending
on the Reynolds number, Re. Numerical methods for solving
the Navier—Stokes equations are often tested and evaluated on
cavity flows because of the complexity of the flows.

Most numerical solutions of two-dimensional cavity flow
[34-41] use a vorticity-stream function formulation and discre-
tize the incompressible, steady linear or nonlinear Navier—
Stokes equattons by finite difference [34-37], multigrid [38,
40], and finite element [41] methods and their variations [39].
Earlier work was reviewed by O. Burggraf [34], where his
numerical solutions of the nonlinear Navier—Stokes equations
for Reynolds number up to 400 showed a large primary vortex
and two secondary vortices in the lower corners. The later
studies of Benjamin and Denny [37], Ghia, Ghia and Shin [38],
Shreiber and Keller [39] show that tertiary vortices are formed
near the bottomn corers for higher Reynolds numbers. The
present results using the lattice Boltzmann method are com-
pared with those done by Vanka [40], Schreiber, and Keller
[39], Ghia er al. [38]. Ghia et af. obtained numerical solutions
up to Re = 10,000 with a 257 X 257 grid using the coupled
strongly implicit multigrid method and the vorticity-stream
function formulation. Their work is the most comprehensive
study of cavity flow to date.

The present simulation uses Cartesian coordinates with the
origin located at lower left corner. The top boundary moves
from left to right with velocity U. The cavity has 256 lattice
nodes on each side. Initially the velocities at all nodes, except
the top nodes, are set to zero. The x-velocity of the top is U
and the y-velocity is zero. Uniform fluid density p = 2.7 is
imposed initially. Then the equilibrium particle distribution
function, 9, is calculated using Eq. (4), and £.; is set to equal
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to f9 for all nodes at + = 0. The evolution of f,; can then be
found by a succession of streaming and relaxation processes.
After streaming, the velocity of the top boundary is reset to its
uniform initial velocity, At the end of each streaming and
collision process cycle, f; at the top is set to the equilibrium
state, Bounce-back boundary conditions are used on the three
stationary walls. The two upper comers are singular points
which are considered as part of the moving lid in the simula-
tions, but tests shown there is little difference if these two
points are treated as fixed wall points, The uniform velocity of
the top wall used in the simulations is I/ = 0.1. Compressibility
effects are discussed in Section 4.4. The Reynolds number used
in the cavity simulation is Re = ULy/», where U is the uniform
velocity of the top plate, Ly is the number of lattice units along
one side of the cavity, and v is the kinematic viscosity as given
in Eq. (5). All the results are normalized to allow comparisons
between the present work and other results based on a unit
square cavity with unit velocity of the top boundary.
Numerical simulations were carried out using the lattice
Boltzmann method for Re = 100, 200, 400, 1000, 2000, 5000,
7500, and 10,000 on a 256 X 256 latrice (256 lattice nodes
and 255 lattice units in one side). Steady-state solutions were
obtained except for the last case because bifurcation takes place
somewhere between Re = 7500 and 10,000. The results for
Re = 10,000 oscillate between a series of different configura-
tions. For this reason the results presented in this paper are
those for Re up to 7500. The dependent variables of stream
function, velocity, pressure, and vorticity are calculated using
the particle distribution function, f;. the dependent parameter
of the drag coefficient of the driving wall is discussed also.

3.1, Stream Funcrion

Figures la—f show plots of the stream function for the Reyn-
olds numbers considered. It is apparent that the flow structure
is in good agreement with the previous work of Benjamin and
Denny [37], Schreiber and Keller [39], and Ghia et al. [38].
These plots give a clear picture of the overall flow pattern and
the effect of the Reynolds number on the structure of the steady
recirculating eddies in the cavity. In addition to the primary,
center vortex, a pair of counterrotating eddies of much smaller
strength develop in the lower commers of the cavity. At Re =
2000, a third secondary vortex is seen in the upper left corner.
It is generated at a critical Re of about 1200, according to [37],
in agreement with the results of the present work. For Re =
50040, a tertiary vortex in the lower right-hand comer appears.
A series of eddies with exponentially decreasing strength in
the lower corners has been predicted by Ghia et al. [38].

For low Re (e.g., Re = 10), the center of the primary vortex
is located at the midwidth and at about one-third of the cavity
depth from the top. As Re increases (Re = 100}, the primary
vortex center moves towards the right and becomes increasing
circular. Finally, this center moves down towards the geometric
center of the cavity as the Re increases and becomes fixed in
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its x location for Re = 5,000. the movement of the vortex
center location versus Re is shown in Fig. 2 along with the
results given by Ghia et al. [38].

To quantify these results, the maximum stream function value
for the primary vortex and the minimum values for the second-
ary vortices along with the x and v coordinates of the center
of these vortices are listed in Table 1. All the results presented
use a uniform top velocity U/ = 0.1, except for Re = 100,
where U7 = (.01 is used. The reason is discussed in Section
4.4. Also listed are results selected from previous work [38-
40]. Previous results agree with each other for Re = 1000, but
they vary for higher values of Re. The resulis of the present
work and that of Ghia et al. [38] for stream function values
agree within 0.2% for all values of Re (Re = 2000 data was
not given by [38]). The locations of the vortex centers predicted
by the lattice Boltzmann method also agree well with those
given by [38].

Unlike most finite-difference or finite-element methods that
start from the steady-state, partial differential equations, the
present method is an unsteady approach in which the solution
evolves into steady state. The time to reach steady state depends
on the lattice size, the values of Re, the driving velocity, U,
and the inifial condition. For all the cases run in this paper,
steady state is reached when the difference between the maxi-
mum values of the stream function for successive 10,000 steps
(process cycles) is less than 107, Considering the kinetic, com-
pressible, and unsteady nature of the lattice Boltzmann method,
the excellent agreement with entirely different methods such
as Ghia ef al. [38] is quite encouraging.

The minimum values of stream function and the center of
the secondary vortex in the upper left corner for Re = 5000
and 7500 are listed in Table 1L These results also show good
agreement with Ghia er al. [38].

3.2. Velocity Profiles

Velocity components along a vertical and horizontal center
lines for several values of Re are shown in Fig. 3. the velocity
profiles change from curved at lower values of Re to linear for
higher Re values. The near linear profiles of the velocity in the
central core of the cavity indicate the uniform vorticity region
generated in the cavity at higher values of Re. These results
agree with those from previous studies [36, 38, 39].

3.3. Vorticity

The plots of vorticity in Figs. 4a—f show that the steady
cavity flow within closed streamlines at high Re consists of a
central, inviscid core of nearly constant vorticity with viscous
effects confined to thin shear layers near the walls. Batchelor
[42] predicted these results from his model for separated eddies
in a steady flow. As Re increases, several regions of high
vorticity gradients (indicated by concentration of the vorticity
contours) appear within the cavity. The thinning of the wall
boundary layers with increasing Re is evident from these plots,
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FIG. 1. (a) Stream function for Re = 100. Top velocity U = 0.01. The center of the primary vortex is at (0.6196, 0.7373). The center of [ower left vortex
is at {0.0392, 0.0353). The center of lower right vortex is at (0.9451, 0.0627). (b) Stream function for Re = 400. Top velocity I/ = 0.1, The center of the
primary vortex is at (0.5608, 0.6078). The center of lower left vortex is at (0.0549, 0.0510). The center of lower right vortex is at (0.8902, (.1255). (c} Stream
function for Re = 1000. Top velocity &/ = 0.1. The center of the primary vortex is at (0.5333, 0.5647). The center of lower left vortex is at (0.0902, 0.0784).
The center of lower right vortex is at (0.8667, 0.1137). (d) Stream function for Re = 2000. Top velacity 7 = 0.1. The center of the primary vortex is at
(0.5255, (.5490). The center of lower left vortex is at {0.0902, (.1059). The center of lower right vortex is at (0.8471, 0.0980). (e) Stream function for Re =
5000. Top velocity I/ = 0.1. The center of the primary vortex is at (0.5176, 0.5373}. The center of lower left vortex is at (0.0784, 0.1373). The center of
tower right vortex is at (0.8078, 0.0745). (f) Stream function for Re = 7500. Top velocity &/ = 0.1. The center of the primary vortex is at {0.3176, 0.5333),
The center of lower left vortex is at (0.0706, 0.1529). The center of Jower right vortex is at (0.7922, 0.0667).
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0.80 ‘ : although the rate of this thinning is very slow for Re =5000.

Re = 10 The values of vorticity at the center of the primary vortex for

0.75 - _ different Re are listed in Table III. These values closely agree

" o 100 with the results of Ghia et al. [38] and approach the analytical

& + present work value of 1.886 for an infinite Reynolds number calculated by
; 0.70 - o CGhia et al - Burggraf [34] using Batchelor’s model.

E + 200 3.4, Pressure

E‘ 0.65~ 7 Figures 5a—f displays the pressure deviation contours for the

: present simulations. Since only the pressure gradient appears

2 0.601 o + 400 1 in the Navier—Stokes equation, the pressure values can differ

§ ) by a constant. These plots are in good agreement with the static

= & 1000 pressure given by Burggraf [34]. Note that the top wall in [34]

0.55 + 2000 i moeves from right to left which is opposite to that in the present

g + 5000 simulation. The pressure in [34] is obtained by integrating

Re = 7500 the Navier—Stokes equation given the velocity field, while the

0.50 ! ' pressure in the lattice Boltzmann method satisfies the equation

0.50 0.55 0.60 0.65

of state of an isothermal gas given by p = ¢Zp (see the Appen-
dix). The cobserved agreement between these very different

FIG. 2. The locations of the center of the primary vortex for different approaches demonstrates that the lattice Boltzmann BGK model
values of Re numbers. The origin is the geometric center of the cavity. is valid for Simu}atiﬂg incompressible flow. By examining the
closed contours in the pressure plots, it is seen that the inviscid
core grows with increasing values of Re. The pressure contours
(and streamlines) presented in this paper are exactly the same
as those in [43] by J. L. Sohn for all of the values of Re studied.

X location of primary vortex

TABLE I

Vortex Centers: Stream Function and Location

Primary vortex Lower left vortex Lower right vortex

Re Winax x ¥ Phin * ¥y iin * ¥
100 a (.1034 0.6188 0.7375 —1.94e-6 0.0375 0.0313 —1.14e-5 0.9375 0.0563
b 0.1034 0.6172 0.7344 —1.75¢-6 0.0313 0.0391 —1.25e-5 0.9453 0.0625
v 0.1033 0.6167 0.7417 —2.05e-6 0.0333 0.0250 —1.32e-5 0.9417 0.0500
d (.1030 0.6196 0.7373 —1.72e-6 0.0392 0.0353 —122e-5 0.9451 0.0627
400 a ¢.1136 0.5563 0.6000 —1.46e-5 0.0500 0.0500 —6.45¢-4 0.8875 0.1188
b ¢.1139 0.5547 0.6055 —1.42e-5 0.0508 0.0469 —6.42¢-4 0.8906 0.1250
c ¢.1130 0.5571 0.6071 —1.45e-5 0.0500 0.0429 —6.44e-4 0.8857 0.1143
d 0.1121 0.5608 0.6078 —1.30e-5 0.0549 0.0510 —6.19%-4 0.8902 0.1255
1000 a 0.1173 (0.5438 (1.5625 —2.24e-4 0.0750 0.0813 —1.74e-3 0.8625 0.1063
b 0.1179 0.5313 0.5625 —23le-4 0.0859 0.0781 —1.75¢e-3 0.8594 0.1094
c 0.1160 0.5286 0.5643 —-2.17c4 0.0857 0.0714 —1.70e-3 0.8643 0.1071
d 0.1178 0.5333 0.5647 —2.22e-4 0.0902 0.0784 —1.6%-3 0.8667 G.1137
2000 a 01116 0.5250 0.5500 —6.90c-4 0.0875 0.1063 —2.60e-3 0.8375 0.0938
d 0.1204 0.5255 0.5490 —7.26e-4 0.0902 0.1059 —2.4e-3 0.8471 0.0980
5000 a 0.0921 0.5125 0.5313 —1.67e-3 0.0625 0.1563 —5.49e-3 0.8500 0.0813
b 1190 0.5117 0.5352 —1.36e-3 0.0703 0.1367 —3.08e-3 0.8086 0.0742
d (0.1214 0.5176 0.5373 —1.35¢-3 0.0784 0.1373 —3.03e-3 0.8078 0.0745
7500 b 01200 0.5117 0.5322 —1.47-3 0.0645 0.1504 —3.28e-3 0.7813 0.0625
d 01217 0.5176 0.5333 —1.51e-3 0.0706 0.1529 —3.20e-3 0.7922 0.0667

Note: a, S. P. Vanka [40]; b, U. Ghia, K. N.-Ghia, and C. T. Shin [38]; ¢, R. Schreiber and H. B. Keller [39]; d. present work.
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TABLE II

Upper Left Vortex: Stream Function and Location

Upper Jeft vortex

Re Wain x ¥
5000 a —1.46e-3 0.0625 0.9102
b —1.40e-3 0.0667 0.905%
7500 a —2.05e-3 0.0664 0.9141
b —2.06e-3 0.0706 0.9098

Note. a, U. Ghia, K. N. Ghia, and C. T. Shin [38]; b, present work.

3.5. Drag on the Top

The drag force and the drag ceefficient of the moving wall
are calculated here for Re values considered in the study. The
stress on the moving wall is given by the Newton’s formula:

au
T = nu‘:.j;,

where « is the x component of velocity and g is the kinetic
viscosity. The drag force on this surface, £, is defined and
computed as

n—1

‘ 3 . — wiomy — 1
F,= ﬂ Todx = J’Z,ua—udx == L E uthy ny) — ullr ny — 1) Ax,
, .

i=1 A_.V

a

255

223

191

158

128

96

Y (measured in lattice nodes)

0.0 0.5 1.0
u/U (dimensionless x—velocity)

FIG. 3.
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where #, is the grid number in the x direction, L is the length
of the square cavity, and Ay = Ax = L/(n, — 1) are the lattice
spacing. The drag coefficient is then written as

UL’

Cu

where p is the average density and U/ is the velocity of the top.
The drag coefficient decreases as Re increases, as found in other
laminar flow configurations. This can be seen by introducing the
dimensionless quantities

The drag coefficient can then be expressed as

! L3
U Sow@uiayydx' e e
a UL 0 pUL 8y’

.

1ou’

" Reloay'

The resuits of drag and drag coefficients for different values
of Re are listed in Table 1V and the drag coefficient is plotted
as a function of Re in Fig. 6.

4. ERROR ANALYSIS

4.1, Sources of Errors

There is no analytic solution for cavity flow. Results from the
work described in this paper are compared with the numerical

0.50

=

e

0.32

g o 0D

-0.05

—0.23

v/U (dimensionless y—velocity)

-0.42

~0.60

1 I - 1

0 32 64 96 128 159 19t
X (measured in lattice nodes)

223

(a) Velocity profiles for u through the geometric center of the cavity. (b) Velocity profiles for v through the geometric center of the cavity.
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FIG. 4. Vorticity contours of the cavity flow: (a) Re = 100; {b) Re = 400; (c) Re = 1000; (d} Re = 2000; (¢) Re = 5000; (f) Re = 7500.
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TABLE III

Vorticity in the Center of Primary Vortex

Reynolds number

Q.. 100 400 1,000 5,000 7,500
a 3.1665 2.2947 2.0497 1.8602 1.8799
b 3.1348 2.2910 2.0760 1.9384 1.9014

Nare. a, U, Ghia, K. N. Ghia, and C. T. Shin [38)]; b, present work.

solutions obtained by several other methods. Differences are
found between the results of previous calculations, especially
for higher values of Re. Several of these authors state that the
data for the secondary vortices are less reliable due to corner
singularities and/or roundoff errors [39], mesh-size limitations
[36], or because the values of the stream function in the corners
are small and, in some cases, below the convergence accuracy
of the calculations [40].

Our early results from lattice Boltzmann simulations were
very close to the results given by Ghia er al. [38] for Re =
1000. However, the properties of the secondary vortices were
less satisfactory for Re <0 1000. The secondary vortex of the
lower left corner for Re = 100, whose stream function is a
small quantity of the order of 107%, was not detected. Also, the
secondary vortex in the lower right corner for the same Re,
whose stream function is of the order of 1073, did not match
corresponding results of other investigators. Although these are
not major features, it was important to investigate the cause of
these discrepancies and to make improvements.

The theoretical assumptions of the present method are the
Boltzmann transport equation, plus the single relaxation time
approximation of the collision term. As long as the macroscopic
properties of fluid vary slowly enough in space and time, com-
pared with microscopic particle dynamics, collisions should
maintain approximately the local equilibrium such that the as-
sumptions of molecular chaos by Boltzmann and single relax-
ation time by BGK are valid for problems of fluid dynamics.
The possible reasons for the “‘errors’™ in the present simulations
may be categorized as follows:

1. The simulations done for different values of Re on a
256 X 256 lattice used single precision arithmetic in CM200
due to limited computer sources. It is possible that roundoff
error could be accumulated.

2. The small compressibility effect presented in the LBE
simulations may cause differences when compared with models
where compressibility is zero.

3. The lattice used here may still be too coarse to resolve
all the small scale phenomena.

4. The time step at which the simulation is terminated may
not be large enough to represent the steady state.
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5. The integration methods used in the calculation of the
stream function may introduce errors.

To check errors caused by | and 4, experiments using double
precision Hoating-point arithmetic and running for longer times
were carried out. These experiments did not change the main
results nor improve on finding weak vertices on the smaller
scales, indicating that errors due to 1 and 4 are small compared
with other errors. What follows are subsections investigating
the remaining error sources.

4.2, Effect of Lattice Size

To test the effect of lattice size, simulations for Re = 1000
were done on the following lattice configurations: 33 X 33,
65 X 65, 129 X 129, 257 X 257, and 513 X 513. The driving
velocity used was fixed at I/ = 0.1. Two relative velocity
errors, the L1 and L2 errors, were calculated according to the
following formula:

2l — ) + oy — vy
EI‘_\. |Lt(}1 + iU()l

El=

L}

_ \/Ex.y (H] - u0)2 + (Ul - UU)2
VE )l + W

E2

where i, v are the x and ¥ components of the velocity, respec-
tively. The subscripts 0, 1 indicate the 513 X 513 and the
coarser grain lattice, respectively. Velocities on different grids
are taken at corresponding positions, while the sums are taken
over the entire lattice.

The results for £1 and E2 are plotted logarithmically in Fig.
7 and listed in Table V. It is clear from Fig. 7 that the conver-
gence rate is approximately first order in space. This result
is different from other works [17, 44], where a second-order
convergence rate is claimed. In [17] a decaying Taylor vortex
flow with periodic boundary conditions (no solid walls) is
treated and in [44] more complicated and accurate boundary
conditions for the particle distribution function are used instead
of the bounce-back condition implemented at the wall in the
present work. The first order convergence rate observed here
may be due to the bounce-back condition used on the stationary
walls. This observation is confirmed by a recent paper [45] in
which the bounce-back boundary condition is shown to be a
first-order approximation to a no-slip wall.

Better resolution is obtained as the number of lattice nodes
increases, However, computer time grows with the lattice num-
ber because more nodes are updated and the time to reach
steady state increases. Of course, the number of time steps
required {o reach steady state strongly depends on initial condi-
tions. Table VI gives an idea how the number of time steps
varies with the lattice size for fixed initial conditions. A simula-
tion run on a 513 X 513 lattice for Re = 100 did not improve
the method’s ability to predict the secondary vortex in the lower
left corner.
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b

A b

FIG. 5. Pressure deviation contours of the cavity flow (the value has been muliplied by 1000): {a) Re = 100; (b} Re = 400; {¢) Re = 1000, (d) Re =
2000; () Re = 5000; (f) Re = 7500.
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TABLE IV
Drag and Drag Coefficient of the Top

Re 100 200 400 1000 2000 5000 7500
Fy 1.45 0.59 028 0.14 0.08 0.05 0.03
C, 56.90 23.27 10.86 5.31 312 1.67 1.28

4.3. Integration Error

The most important features of the cavity flow are described
by the stream function. The stream function used by Ghia et
al. [37] (and others} was the primary variable. In the lattice
Boltzmann model, however, the primary variable is the particle
distribution function, f;. The velocity at each site 1s calculated
from f,; and the stream function is obtained by integrating
the velocities.

To investigate the error caused by integration, three integra-
tion rules (rectangular, trapezoidal, and Simpson) were used
for Re = 100, The results from all three rules are quite close
if the integrations are taken in the same direction. Significantly
different results are obtained by integrating from the four differ-
ent directions, namely integrating # along v from top to bottom
or from bottom to top and integrating v along x from left to
right or from right to left. Theoretically, they should all give
the same value for the stream function,

From a numerical point of view, the integration should be
taken from the smaller scale; otherwise the smaller scale would
be drowned into roundoff error. However, in this particular
case, integration from bottom to top contains significant error.
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FIG. 6. Drag coefficient of top wall versus Re.
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FIG. 7. Convergence rate of the LBE method for Re = 1000 with top
velocity &/ = (0.1, The errors are calculated relative to results obtained on a
513 > 513 latiice.

The reason can be seen from the error formaula. If the trapezoidal
rules is used,

1) = [ fy

~h B Fa@) +fla+ )+ +%f(b)] =L,

where b = (b — a)/n and n is the number of subdivisions
within {a, b}, the integration error can be approximated by the
asymptotic error formula [43):

kﬁ
ELf)= Wy L' () - f'(a)l.

The factor, #*/12, in the present case is about 1.3 X 107°. The

TABLE ¥

Relative Velocity Error Caused by Lattice Size

Lattice size 33 x 33 65 X 65 [29 X [29 257 x 257
E, 0.1316 (.0623 0.0264 0.0087
£ 0.1968 0.1088 0.0512 0.0185

Note. Re = 1000; E, and E, are based on 513 X 513 lattice.
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TABLE VI

Time Steps to Reach Steady State for Different Lattice Sizes

Lattice size 33 X 33 65 X 65 129 X 129 257 X 257 513 X 513

Time steps 60,000 140,000 200,000 350,000 600,000

Note. Re = 1000.

error then depends on the derivatives at the end points. In the
case of integration taken from top to bottom or from bottom
to top, the two derivatives have opposite signs and the error is
enhanced. In addition, the value of the derivative at the top is
large. On the other hand, integration from left to right or from
the right to left has the same signs on the two end derivatives,
therefore decreasing the integration error. Since the left corner
vortex is smaller than the right, the integration taken from left
to right gives better results than the integration taken from the
right to the left. Therefore, the trapezoidal rule ts used to inte-
grate v from left to right to calculate the stream function.
The error is then of order of 107° according to the asymptotic
error formula.

4.4. Compressibility Effect

It has been shown that the present LBE model represents
the Navier—Stokes equation in the incompressible limit (see
the Appendix). But in the LBE simulation, the density cannot
be a constant (otherwise pressure changes cannot be described).
It is important to find the effect of compressibility on the
present solution.

One quantity that represents compressibility is the mean
variation of density. The mean density is defined as

Ei P(In t)

p= N

where N is the total number of nodes. The mean variation of
density is given by

A= % S o -

For Re = 100, this mean density fluctuation, A, is calculated
for U = 0.1, U = 005, U = 0.01 and listed in Table VII,

TABLE VII

Mean Density Fluctuation

U 0. .05 0.01

M 0.173 0.0867 0.0173

A 2.6 X 107 74 % 107 56 % 1073
Note. Re = 100.
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along with the Mach number, M = u/c,, where ¢, = 1/V3 s
the speed of sound for the present model. The table shows that

AL/ =005 = (AU =01
and
AU = 0.01) = A (U = 0.05)

These results agree with the known relationship (18] that A
is proportional to M2 (This relation can be seen from the
dimensionless incompressible Navier—Stokes equations.)

The compressibility effect can also be examined for the
cavity flow problem as follows. In the steady case, the continuity
equation represented by the LBE is V- (pn) = 0. Due to a non-
constant p, the velocity u does not satisfy the incompressible
continuity equation given by V-u = 0 exactly. It is from this
equation that the stream function can be defined using u = a¢#/
dy and v = —ag/éx, where i is the stream function. There is
actually no exact definition for the stream function in the LBE.
Given a discrete velocity field obtained from the LBE calcula-
tion, an approximation of the stream function for the incom-
pressible flow with V.u = 0 needs to be constructed. The
stream function definition written as i = f —vdr+ udyis
still used to calculate the stream function. When integrating in
only the x- or y-direction, the integral becomes ¢ = f; u dy,
or = uf; v dx. In the case of incompressible flow in a cavity,
the boundaries coincide with the zero stream function. The
integrals then take the form

(,’;:ﬂudy=j:vdx=0,

where L is the total length of the wall. In the actual computa-
tions, however, the stream function at the end wall will not
exactly equal zero because of roundoff and integration errors.
Due to the additional effects of compressibility in the LBE
method, if the stream function is calculated by integrating v
from the left to the right edge of the cavity, the values of the
stream function on the right wall would indicate the error caused
by compressibility, roundoff, and integration errors. Since the
trapezoidal rule gives the same results for integrations taken
from opposite directions if there is no roundoff error, the round-
off error is found by comparing the values of the stream function
on the Teft and right walls taken from opposite directions (the
other sources of error, compressibility and integration, are the
same for these two integrals). This error is less than about 1077,
The integration error is of the order of 107" as discussed above.
Therefore, the maximum and the mean value of ¢ at the right
wall can be computed as an indicator of error due to compress-
ibility if this value is larger than 1075, The mean and maximum
stream function at the right edge of the cavity is defined, respec-
tively, as
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TABLE VIII
Compressibility Effect

U 0.1 .05 0.01

M 0.473 0.0867 0.0173

S, 24 % 1074 64 X 107° 2.7 % 1078

S 6.7 X 19 1.8 X 0 2.1 x> e
Note. Re = 100.

S.= | 2 (W, j)in,

S, = max [, ),
z

and

where n, = n, = 256 is the number of nodes in the x- and y-
directicns, respectively. These values are calculated for U =
0.1, U = 0.05, and U = 0.01 for Re = 100 and listed in Table
VIII. Again, the results show that §, and §,, are proportional
to M?, These values can be used as a quantitative measure of
the compressibility error of the LBE method. The change of
compressibility error with Re is calculated for UV = 0.1 and
listed in Table [X. The compressibility error does not vary
much with Re. With increasing Re, the error decreases slightly,
but it is still of the same order of magnitude.

The compressibility error measured by S, and S, has about
the same order effect as the small scale phenomena in the
cavity flow for low values of Re. Nevertheless, by choosing
an appropriate direction of integration for the stream function,
predictions of the small vortices are still obtained as given in
Table I. Furthermore, the compressibility error can be reduced
by using smaller velocities at the top boundary. The results for
Re = 100 in Table I are calculated using U = 0.01, while other
Reynolds number use I/ = 0.1. However, the time steps required
to reach steady state for smaller top velocities increases dramati-
cally. To overcome the compressibility error in the present LBE
model, a new incompressible LBE model for steady-state flow
has been developed and will be published in another paper [47].
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5. TRIANGULAR LATTICE (FHP) VERSUS
SQUARE LATTICE

Simulations for cavity flow are also carried out on a triangular
lattice (FHP). There are two types of particles on each node
of an FHP model; rest particles and moving particles with unit
velocity e; along six directions. In analogy to the procedures
used for the square lattice in the Appendix, the equilibrium
distributions for the FHP model are given as

fo=d,— pu = ap — pit
F = d + 3pi(e; u) + 2(e;- u)? — 3u’]

p~ap
6

+ 5pl(e;-w) + 2(e;- u) — 3],

where @ is an adjustable parameter. If the ratio of rest and
moving particles is defined as A = dy/d, the pressure is deter-
mined by the isothermal equation of state,

l-a)p 3

p=3d="—> i

and the speed of sound is

The viscosity is related to the relaxation time through an equa-
tion of the form

2r—1

=

Theoretically, the relaxation time, 7, cannot be lower than 0.5
for a positive viscosity. To reach higher Re, the relaxation time
can be lowed. Tests on a 128 X 128 lattice with a maximum
velocity of U/ = 0.1 show that a critical value for 7 exists.
Above this value, the simulation is smooth and reasonable
physical patterns for the cavity flow are seen in the real-time
plots. However, below this critical value, some nonphysical
patterns appear. Further reduction in the value of 7 would cause

TABLE IX
Compressibility Effect with Re

Re 10G 200 460 1600 2006 5600 7500
S, 24 X 107 1.5 X 107 1.0 X 1074 6.4 x 1073 48 x 107° 3.8 X 1073 3.8 X 107
5, 6.7 x 107 4.6 X 107 32 %107 2.1 x 167 1.5 x 167* 1.1 x 10 8.7 x 167

Note. U = 0.1.
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TABLE X
Lowest Relaxation Time for FHP Model, I/ = 0.1, Case 1

HOU ET AL.

TABLE XII
Lowest Relaxation Time for FHP Model, U = (.01, Case 2

A 1 2 3 4 5 6 8 10
c, 0655 0612 0577 0548 0.522 0500 0463 0433
M 0153 0.163 0173 @182 0.192 0200 0215 0.23)]
e G533 0528 0327 0526 0525 0520 0518 0516
Ren, 1551 1829 1896 1969 2048 2560 2844 3200

A 1 2 6
e 0.655 0.612 .500
M 0.015 0.016 0.6200
Toin 0.560 0.520 0.519
Rénas 85.3 256 260.5

Note, U = 0.1, 128 X 128 lattice.

the simulation to be terminated by numerical blowup. Define
the critical value of 7 as the towest limit for the relaxation time
that gives physically correct results. This limit varies with the
ratio, A, maximum velocity, U, and the problem studied. If A
is increased, the speed of the sound will be decreased and the
Mach number is then increased if the velocity is unchanged.
Table X lists the lowest relaxation time, 7., and hence the
highest Re number, Re,,, obtained for different A, along with
their speed of sound, c,, and Mach number, M. Table X shows
that the highest Re can be increased by increasing A. However,
the compressibility error is also increased.

Table XI lists results for the same conditions as in Table X,
but for slightly different initial boundary conditions on f;. In
Table X (case 1), the initial fluid densitly on each node of the
stationary walls is the same as that for interior nodes. In Tables
XI-XII the initial density on the stationary walls is set equal
to zero. It 1s clear that when A = 1, the lowest 7is much higher
than that in Table X, but for large A the differences of 7,
between these two cases are diminished. The rest particles in
the LBE method play the role of a particle reservoir. When the
macroscopic velocity is higher, rest particles can be turned into
moving particle and vice versa. Higher values of A = dy/d
mean that a larger fraction of rest particles in the density behave
like a fluid that is less rigid and more flexibie (the compressibil-
ity is higher). When A = 1 in case 2, the lowest value of 7 for
stable results is 0.5668. However, setting 7 = 00,5667 would
make the computation blow up immediately due to the large
initial density gradient on the wall and the relatively small
fraction of rest particles. The lowest limit of 7 does not depend
on the lattice size. Changing the maximum velocity, {/, does

TABLE XI
Lowest Relaxation Time for FHP Meodel, & = 0.1, Case 2

A 1 2 3 4 5 6 g 10
c, 655 0612 0577 0.548 0522 0500 0463 0433
M 0153 0163 0.173 0182 0.192 0200 0215 0231
T 0.567 . (.529 0526 (0.524 0523 0523 0520 0520
Re... 764 1766 1969 2133 2226 2226 2560 2560

Note. U = (0.1, 128 X 128 lattice.

Note. U = 0.01, 128 X 128 lattice.

change the lowest 7slightly. However, the highest Re numbers
obtainable by this approach are much lower than that for &/ =
0.1 (see Table XII for case 2).

The square lattice corresponds to A = dyfd; = 4. Tests on
a 128 X 128 square lattice with the maximum velocity of U =
0.1 show that the value of rcannot be smaller than 0.507 (Re =
5485) for cavity flow, Hence, a simulation run on a 256 X 256
lattice with U/ = (.1 can reach Re = 10,000 (7 = 0.50768)
which is about the highest limit of Re on this size lattice for
cavity flow. Using small U did not produce a further reduction
of 7. The square lattice is better than the FHP lattice in the
cavity flow simulations because the former can reach higher
values of Re than the latter for the same maximum velocity
and lattice size. Since the boundaries of the cavity are fitted
better using the square lattice than the FHP lattice, the formation
of the vortices is more gentle in the simulation using a square
lattice than an FHP lattice. The ranges of parameters presented
in this section are consistent with the results of linear stability
analysis of the LBE method without boundaries [48].

6. CONCLUSIONS

The lattice Boltzmann method is a derivative of the lattice
gas automata method and therefore inherits from the LGA some
of its advantages over traditional computational methods. It is
parallel in nature due to the locality of particle interaction and
the transport of particle information, so it is well suited to
massively parallel computing. The lattice Boltzmann method
easily bandles complex boundary conditions and complex prop-
erties of a fluid system, such as flow through porous media and
multi-phase flow. One important improvement due to the LBE
method is that it can fully recover the exact Navier—Stokes
equations at the macroscopic level. However, there is a trade-
off. The lattice Boltzmann method is no longer purely Boolean
and it does not have the robust numerical stability guaranteed
in the LGA.

Detailed studies of the cavity flow problem using the lattice
Boltzmann method has shown that the methed is accurate,
compared with conventional methods using the same mesh size.
This verification gives one confidence to apply the method to
other complex systems. All aspects of the present work such
as boundary conditions, parameter ranges, lattice size, and com-
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pressibility effects are important when the method is applied
to other problems. The following remarks are in order:

1. The proper implementation of the boundary conditions is
crucial for the lattice Boltzmann simulation. Various boundary
conditions such as periodic, particle bounce-back, wind tunnel,
and constant flux conditions are commenly used for different
situations in LBE, It is important that the boundary conditions
applied for the simulation represent the correct physical prob-
lem. In cavity simulations, for example, besides the uniform
top velocity and no-slip conditions on the walls, the mass must
be conserved globally. Any violation of this restriction will
produce nonphysical results. It is found in our computaticnal
experiments {not presented in this paper) that some improper
boundary conditions can give a qualitatively reasonable flow
but lead to guantitatively incorrect results.

2. A range of parameters for the model is explored for the
cavity simulations. Parameters such as the lattice size, maxi-
mum velocity, the ratio of rest and moving particles, and the
single relaxation time are adjustable in the LBE. The lattice
size should be chosen so that adequate resolution for all scales
in the problem can be obtained at an affordable cost. The
maximum velocity used in a simulation should be sufficiently
small, inducing small compressibility errors, and consistent
with the equilibrium distribution which is an expansion of small
velocity. For the Chapman—Enskog expansion to be valid, the
spatial gradients of density and velocity should be small also.
Since the maximum velocity and lattice size are limited, the
single relaxation time needs to be small to achieve the higher
Reynolds numbers. 1t is found that the lowest relaxation time
leading to stable simulations depends on the ratio of rest and
moving particles, on the maximum velocity and on the problem.
To obtain a reliable simulation, the relaxation time T should
be chosen not too close to the lowest limit for the problem
under investigation. It cannot be smaller than $to ensure positive
viscosity, in any case. On the other hand, since the speed of
sound in the LBE is of order one, and the relaxation time
represents characteristic collision time; hence, 7 has the same
order as the mean free path (measured in lattice units). There-
fore, T should not be too large to guarantee that the mean free
path is much smaller than the physical characteristic length
scale. This is a necessary condition for the microscopic statistics
of the LBE to approach the Navier—Stokes equations as shown
in the multiscale expansion (see the Appendix).

3. The compressibility effect may become important when
physical quantities of the smallest scale in an incompressible
flow is comparable to the compressibility error. Using a smaller
maximum velocity can reduce this error, However, it is not
practical to predict scales on the order of 1078 or smaller by
the present LBE method.

4. The square lattice is better than the triangular lattice
(FHP) in two-dimensional simulations because the former can
reach higher values of Re number for the same lattice size and
maximum velocity.
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5. The computer time used in the simulations is not com-
pared carefully with other methods, since the LBE includes
transient effects in this problem and, hence, is not economical,
compared with the multigrid method. There is no doubt, how-
ever, that the method can simulate unsteady and other complex
problems on a parallel computer [4, 5, 15-33].

6. There are some ripples in the streamline, vorticity, and
pressure contour plots for high Re. The authors tried to eliminate
these ripples by subgrid modeling [49], but they were not suc-
cessful. The wiggles appear mostly in the two upper corners,
where singularity causes high gradients on the vorticity and
pressure. The wiggles are also seen in the lower right corner
of the tertiary vortex on the streamline plot for Re = 7500. By
carefully examining the plots for Re = 7500, one can find that
the wiggles clearly are aligned with lattice directions. Hence,
it is suspected that the lattice effects due to the discreteness of
the velocity are the main cause of the wiggles. It is still an
open question how to reduce the oscillation of the solution for
high values of Re.

Lattice gas and lattice Boltzmann methods are relatively new
approaches for simulating complex flows. It is apparent that
further research on both theoretical and practical aspects is
needed. Implementation of higher order boundary conditions,
models for better resolving small scale phenomena, applications
in new fields, improvement of thermodynamical models, and
careful studies for three-dimensional geometries are challenges
for future research.

APPENDIX

This appendix details the derivation that shows how the
Navier—Stokes equations are recovered from a lattice Boltz-
mann equation on a square lattice by using the Chapman-
Enskog expansion procedure of kinetic theory. In addition, the
equilibrium distribution functions are obtained to guarantee that
the requirements of isotropy, Galilean-invariance, and velocity-
independent pressure are satisfied.

On each node of a square lattice there are three types of
particle, namely, a rest particle, a particle moving along perpen-
dicular directions, and a moving particle along diagonal direc-
tions (see Fig. Al).

The velocity vectors e, ey, are defined as

e, = cosiilwsini_
. 2 2

€y = \/E (COS (l

i — 1 Ty . fi—1 T
+= +=
5 T 4),sm( 3 T 4)),

The symmetric properties of the tensor 2, (€sia€ip * * +) (Where
o, 3, ... = | or 2 denote the components of e,;) are needed in
the derivation and given as follows:

i=1,..,4.
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FIG. Al.

Schematic of a square lattice.

The odd orders of the tensor are equal to zero. The second-
order tensor satisfies

D Coabois = 2638, 0 f= 1,2, (1)

where &,5 is the Kronecker delta and e, = 1, ¢, = \/5 are the
lengths of e, and e,. respectively.
Finally, the fourth-order tensor has an expression as

2 6&,By|9,
4Aa{57\9 - 860{376:

o= 1,

Z_ €oiaC gl myCois = { (2)

o=2,

where 84,5 = 1 for o = 8 = v = 0, and 0 otherwise, A,p,p =
(8585 + Ouyp T Bapa,).

The Chapman—Enskog procedure is an asymptotic expansion
method for solving the Boltzmann equation in kinetic theory.
It uses a small Knudsen number {the ratio of the mean free
path to the characteristic flow length) in an asymptotic expan-
sion. The lattice unit is required to be small, compared with
the macroscopic characteristic scale. Using & as the small lattice
time unit in physical unit, the lattice Boltzmann BGK equation
in physical units is

Fa® 1 e+ 8) = (%, 0) = —~ [l ) = F3%, D). (3)

A general form of F9(x, 1) can be taken as

fR(x. )= A, + Bles-u) + Cle,-uf + D, (4)
Here A, B,. C,, and D, are coefficients to be determined which
depend on p, but not on u. Equation (4) can be thought as a

spectal type of small velocity (up to the &* term) expansion of
F9 Tt is obvious that 8, = C, = 0.
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Taylor expanding Eq. (3) and retaining terms up to O(§%)
results in

d 518 :
a [5 + (Em‘V)]fm + B [5 + (Em'V)} fa + O(8)
1 (5)
= [fa(x, ) — F9(x, 0.

Next, the Chapman—Enskog-like expansion is applied to Eqg.
(5). As discussed in the conclusion, the value of parameter T
(in lattice units) should be about the same order as the mean
free path; hence, 78 is about equal to the value of the mean
free path in physical units. Under the assumption that miean
free path is of the same order of & (or 7is of order one), &§ can
play the role of the Knudsen number, It is possible, however,
that 7 can be larger than order one. Then the procedure needs
to be modified and the expression of viscosity will be slightly

different from the expression given below. Expanding f,; about
o)

i =Y+ FG+ D+ 059 (©)
with conservation laws X, 2,9 = p, 2 2, f%e, = pu and
constraints 2, %, f% = 0and 2, 2, f" e,; = 0 for n = 1. These
constraints imply that the non-equilibrium distributions do not
contribute to the local values of density and momentum, These
give constraints for coefficients A,, B, C,, and D, as

Ag+ 44, + 4A, = p, (7
2C, +4C, + D, + 4D, + 4D, =0, (8)

and
2B, + 4B, = p. 9)

To discuss changes in different time scales, f, and ¢ are
introduced as t, = t, t; = &, ...; thus

o d J

(10)

at A, o

Substituting Eqgs. (6) and (10) into Eq. (5), the equation to order
of 81is

O, + e VY = =2 1. an

The equation to order &° is simplified by using Eq. (11):

i fo & (3, + € V) (1 - %) =l a
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To derive the equations for p and pu to first order in &, a
summation of Eq. (11} with respect to o and 1 is taken to give
the first-order continuity equation

8,0+ V-(puy=0. (13

Similarly, multiplying by e, in Eq. (11) and taking the summa-
tion as above gives

Blpw) + ¥ T17 =0, (14)

where IT = 2, 2, (e,:€,,)f,: is the momentum flux tensor, Simi-
larly, the equations of order of & for p and u can be obtained
from Eq. (12) as

8,0 =0, (15)

dr o WYy po .
G,I(pu)+V(l ZT)H 0. (16)

Substituting the expression of equilibrium distribution, [T can
be written as

Hg),é = {2A1 + 4A2 + (4C2 + 2D| + 4D2)M2]6a‘3 (17)
+ Scluau,(:‘ + (2C1 - SCZ)uauB6a,B'

The first term is the pressure term and the other two are nonlin-

ear terms. [n order to obtain a velocity-independent pressure,

the coefficient of »? is chosen to satisfy
4C, + 2D + 4D, = 0. (18)

To have Galilean invariance, the non-isotropic term is elimi-
nated by choosing

2C, - 8C, =0 (19
Equation (17} becomes
IS = (A, + 4A5)8,5 + BCouy g m
Assuming that
8C,=p 2n
and
24, + 44, = clp, {22)

where ¢, is speed of sound, gives the final expression for 7' as
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IS = c2pbus -+ puytts. (23)
Substituting Eq. (23) into Eq. (14} results in
d(pw) + V- (puw) = —Vicip). 4

Equations (13) and (24) are Euler equations that are derived
from the &-order of the expansion of the lattice Boltzmann
equation. The pressure is given by p = ¢ip.

To derive the equations accurate to &7, the quantity V-1V
needs to be evaluated. Substituting the non-equilibrium distri-
bution expressed in Eq. (11} into I1J} and using Eq. (13) and
Eq. (23) leads to

H$ = fT{aza[(C 190 + puabtgl + 0, B11528, 5,4
+ ayBZuﬁ(4Aa{fyﬂ - 85asye)} (25)
= —T{—Ciéaﬂa?(puy) + a,u(puguﬁ) + 6,,(28, - SBQ)M'B(SQB

+ 48,(Byu,) 8,5 + 43, Batg) + 43 5(Bou, )},

where the Einstein summation convention is used. To maintain
isotropy, set

2B, — 8B, = 0. (26)

Recalling Eq. (9), B, and B; can be uniquely determined as

p p
= =L 7
BZ 127 BI 3 (2 )
Therefore, Eq. (25} can be written as
Hg& = _T{éay(puy)aaﬁ + %au(P”ﬁ) + %a,ﬂ(pua) (28)

— cio,(pu)byp + 8, pusieg)}.
The last term can be simplified using Eq. (24) to take the form

3 (pugttg) = —u,dp(cip) — ugdolcip) — &y pugign,), {(29)

Eq. (28) therefore becomes

TG4 = —7{G — o, piey)8ap + 30u(prep) + 3350 p1ea) 30)
- “aaﬁ(cfp) - u,eau(CEP) - ay(puuuﬂu'y)}-

Combining equations of G(8) and O(&”) for p and v, and Eqgs.
(133, (24), (15), and (16) with Eq. (30) gives the correct form
of the continuity equation (with an error term O(&%) being
omitted),
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dp+ V-(pu)y=10, (30

and the momentum equation may be written in the form

0, (pie,) + dplputaitg) = —dy(cip)
+ 8{d.l(T— DG — ¢])o, (pu,)]
+ 35(7 — D[EA B, + g1,
+ (G — D uadsp + 1gdep)

— 3,0 puigu )]} + O(6%).

(32)

Consider the constraints on A, given in Egs. (7) and (22)
and choose

AI = %P, AQ = TJLGP,

then BEq. (7) is satisfied and the sound speed is given by

Lol

cl=
Equation (32) is simplified as

0 pu,) + dg(pugtig) = —8,(c2p) + 35(2vpSap) a3
— 804(7 — 39, (pHausu,) + O(8Y,

where Sz = (3,1 + dzu,) is the stain-rate tensor, p = c?,d, and

y=2"1g (34)
6
with v being the kinematic viscosity, now measured in physical
units. Re is computed using Re = UL/v, where L is the charac-
teristic length in physical units. If this equation is written in
lattice units, & will not appear explicitly in the equation. The
third term on the right is the nonlinear deviation term of the
incompressible flow [51]. Recall the Navier-Stokes equations
in two dimensions [50],

A pe) + Ba(puugitg) = —dop + 9s82u(Sey — 31,880}, (35)

and
ap+V-(pu) =0, (36}

For an incompressible fluid, the Navier—Stokes equations
become

6,(pya) + p{pitatiz) = —0ap + 3p{20uS,a}.
Viu=0

(37)
(38)

It is seen that Eq. (33) is exactly the same as the incompressible
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Navier-Stokes equation {37), omitting the O{u*) and ©(&?) in
Eq. (33), while Eq. (31) approximates Eq. (38) neglecting
changes of p.

The remaining coefficients I3y, D), and D, are related by Eq.
(8) and Eq. (18), so there is one free parameter. Since all
coefficients of particle 2 are one-fourth of the corresponding
coefficients of particle 1, one can require Dy = 40,. Hence,
the remaining coefficients are determined:

Dy = “%P, D, = ‘%;P, Dy = —ap.
Finally, the equilibrium distribution functions are given by Eq.
(5) in Section 2.
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